ctf小白如何入门?-ctf的学习路线是怎么样的?

发布时间:
2024-09-12 14:22
阅读量:
7

1.ELF格式

我们先来看看 ELF 文件头,如果想详细了解,可以查看ELF的man page文档。



关于ELF更详细的说明: e_shoff:节头表的文件偏移量(字节)。如果文件没有节头表,则此成员值为零。 sh_offset:表示了该section(节)离开文件头部位置的距离

+-------------------+ | ELF header |---+ +---------> +-------------------+ | e_shoff | | |<--+ | Section | Section header 0 | | | |---+ sh_offset | Header +-------------------+ | | | Section header 1 |---|--+ sh_offset | Table +-------------------+ | | | | Section header 2 |---|--|--+ +---------> +-------------------+ | | | | Section 0 |<--+ | | +-------------------+ | | sh_offset | Section 1 |<-----+ | +-------------------+ | | Section 2 |<--------+ +-------------------+

# 2.可执行头部(Executable Header)

ELF文件的第一部分是可执行文件头部(Executable Header),其中包含有关ELF文件类型的信息。 ELF文件在各种平台下都通用,ELF文件有32位版本和64位版本,其文件头内容是一样的,只不过有些成员的大小不一样。它的文件图也有两种版本:分别叫"Elf32_Ehdr"和"Elf64_Ehdr"。 这里以32位版本为例:

#define EI_NIDENT (16) typedef struct { unsigned char e_ident[EI_NIDENT]; /* Magic number and other info */ Elf32_Half e_type; /* Object file type */ Elf32_Half e_machine; /* Architecture */ Elf32_Word e_version; /* Object file version */ Elf32_Addr e_entry; /* Entry point virtual address */ Elf32_Off e_phoff; /* Program header table file offset */ Elf32_Off e_shoff; /* Section header table file offset */ Elf32_Word e_flags; /* Processor-specific flags */ Elf32_Half e_ehsize; /* ELF header size in bytes */ Elf32_Half e_phentsize; /* Program header table entry size */ Elf32_Half e_phnum; /* Program header table entry count */ Elf32_Half e_shentsize; /* Section header table entry size */ Elf32_Half e_shnum; /* Section header table entry count */ Elf32_Half e_shstrndx; /* Section header string table index */ } Elf32_Ehdr;

使用readelf对ELF文件格式进行分析

# readelf -h /bin/ls ELF Header: Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 Class: ELF64 Data: 2's complement, little endian Version: 1 (current) OS/ABI: UNIX - System V ABI Version: 0 Type: DYN (Shared object file) Machine: Advanced Micro Devices X86-64 Version: 0x1 Entry point address: 0x6130 Start of program headers: 64 (bytes into file) Start of section headers: 137000 (bytes into file) Flags: 0x0 Size of this header: 64 (bytes) Size of program headers: 56 (bytes) Number of program headers: 11 Size of section headers: 64 (bytes) Number of section headers: 29 Section header string table index: 28

我们可以使用以下计算方法来计算整个二进制文件的大小:

size = e_shoff + (e_shnum * e_shentsize)

size = Start of section headers + (Number of section headers * Size of section headers)

size = 137000 + (29*64) = 138856 计算结果验证:

# ls -l /bin/ls -rwxr-xr-x 1 root root 138856 Aug 29 21:20 /bin/ls

# 3、程序头部(Program Headers)

程序头部是描述文件中的各种segments(段),用来告诉系统如何创建进程映像的。

typedef struct { Elf32_Word p_type; /* Segment type */ Elf32_Off p_offset; /* Segment file offset */ Elf32_Addr p_vaddr; /* Segment virtual address */ Elf32_Addr p_paddr; /* Segment physical address */ Elf32_Word p_filesz; /* Segment size in file */ Elf32_Word p_memsz; /* Segment size in memory */ Elf32_Word p_flags; /* Segment flags */ Elf32_Word p_align; /* Segment alignment */ } Elf32_Phdr;

# 4、节表头部(Section Headers)

节表头部(Section Headers)包含了描述文件节区的信息,比如大小、偏移等,但这些对二进制文件的执行流程来说并不重要。

  • sections 或者 segments:segments是从运行的角度来描述elf文件,sections是从链接的角度来描述elf文件,也就是说,在链接阶段,我们可以忽略program header table来处理此文件,在运行阶段可以忽略section header table来处理此程序(所以很多加固手段删除了section header table)。从图中我们也可以看出, segments与sections是包含的关系,一个segment包含若干个section。



typedef struct { Elf32_Word sh_name; /* section的名字 (string tbl index) */ Elf32_Word sh_type; /*section类别 */ Elf32_Word sh_flags; /* section在进程中执行的特性(读、写) */ Elf32_Addr sh_addr; /* 在内存中开始的虚地址 */ Elf32_Off sh_offset; /* 此section在文件中的偏移 */ Elf32_Word sh_size; /* Section size in bytes */ Elf32_Word sh_link; /* Link to another section */ Elf32_Word sh_info; /* Additional section information */ Elf32_Word sh_addralign; /* Section alignment */ Elf32_Word sh_entsize; /* Entry size if section holds table */ } Elf32_Shdr;

# 5、表(Section)

# 5.1 .bss Section

保存未初始化的数据,比如那些未初始化的全局变量。

# 5.2 .data Section

保存已初始化的数据。

# 5.3 .rodata Section

保存程序中的只读数据。

# 5.4 .text Section

本节包含程序的实际代码,逻辑流程。 使用readelf查看ELF文件表结构

# readelf -S --wide /bin/ls There are 29 section headers, starting at offset 0x21728: Section Headers: [Nr] Name Type Address Off Size ES Flg Lk Inf Al [ 0] NULL 0000000000000000 000000 000000 00 0 0 0 [ 1] .interp PROGBITS 00000000000002a8 0002a8 00001c 00 A 0 0 1 [ 2] .note.ABI-tag NOTE 00000000000002c4 0002c4 000020 00 A 0 0 4 [ 3] .note.gnu.build-id NOTE 00000000000002e4 0002e4 000024 00 A 0 0 4 [ 4] .gnu.hash GNU_HASH 0000000000000308 000308 0000c0 00 A 5 0 8 [ 5] .dynsym DYNSYM 00000000000003c8 0003c8 000c90 18 A 6 1 8 [ 6] .dynstr STRTAB 0000000000001058 001058 0005d8 00 A 0 0 1 [ 7] .gnu.version VERSYM 0000000000001630 001630 00010c 02 A 5 0 2 [ 8] .gnu.version_r VERNEED 0000000000001740 001740 000070 00 A 6 1 8 [ 9] .rela.dyn RELA 00000000000017b0 0017b0 001350 18 A 5 0 8 [10] .rela.plt RELA 0000000000002b00 002b00 0009f0 18 AI 5 24 8 [11] .init PROGBITS 0000000000004000 004000 000017 00 AX 0 0 4 [12] .plt PROGBITS 0000000000004020 004020 0006b0 10 AX 0 0 16 [13] .plt.got PROGBITS 00000000000046d0 0046d0 000018 08 AX 0 0 8 [14] .text PROGBITS 00000000000046f0 0046f0 01253e 00 AX 0 0 16 [15] .fini PROGBITS 0000000000016c30 016c30 000009 00 AX 0 0 4 [16] .rodata PROGBITS 0000000000017000 017000 005129 00 A 0 0 32 [17] .eh_frame_hdr PROGBITS 000000000001c12c 01c12c 0008fc 00 A 0 0 4 [18] .eh_frame PROGBITS 000000000001ca28 01ca28 002ed0 00 A 0 0 8 [19] .init_array INIT_ARRAY 0000000000021390 020390 000008 08 WA 0 0 8 [20] .fini_array FINI_ARRAY 0000000000021398 020398 000008 08 WA 0 0 8 [21] .data.rel.ro PROGBITS 00000000000213a0 0203a0 000a38 00 WA 0 0 32 [22] .dynamic DYNAMIC 0000000000021dd8 020dd8 0001f0 10 WA 6 0 8 [23] .got PROGBITS 0000000000021fc8 020fc8 000038 08 WA 0 0 8 [24] .got.plt PROGBITS 0000000000022000 021000 000368 08 WA 0 0 8 [25] .data PROGBITS 0000000000022380 021380 000268 00 WA 0 0 32 [26] .bss NOBITS 0000000000022600 0215e8 0012d8 00 WA 0 0 32 [27] .gnu_debuglink PROGBITS 0000000000000000 0215e8 000034 00 0 0 4 [28] .shstrtab STRTAB 0000000000000000 02161c 00010a 00 0 0 1 Key to Flags: W (write), A (alloc), X (execute), M (merge), S (strings), I (info), L (link order), O (extra OS processing required), G (group), T (TLS), C (compressed), x (unknown), o (OS specific), E (exclude), l (large), p (processor specific)

# 6、完成简单的CTF挑战

既然已经对ELF文件有所了解了,那找一个CTF题目来试试吧。

二进制文件下载地址:ufile.io/blvpm

国内下载:lanzous.com/i34qg6f

1、运行这个程序,并传递一些随机字符给它,得到的结果如下:

# ./nix_5744af788e6cbdb29bb41e8b0e5f3cd5 aaaa [+] No flag for you. [+]

2、接着使用strings 查看一下程序的字符串,看是否能找到有用的信息

# strings nix_5744af788e6cbdb29bb41e8b0e5f3cd5 /lib/ld-linux.so.2 Mw1i#'0 libc.so.6 _IO_stdin_used exit sprintf puts strlen __cxa_finalize __libc_start_main GLIBC_2.1.3 Y[^] [^_] UWVS [^_] Usage: script.exe <key> Length of argv[1] too long. [+] The flag is: SAYCURE{%s} [+] [+] No flag for you. [+] %c%c%c%c%c%c%c%c%c%c%c%c%c%c%c ;*2$" GCC: (Debian 8.2.0-8) 8.2.0 crtstuff.c

我们可以看到 “%c” 是打印flag的字符串,数量是15个。

3、我们可以查看“.rodata ”部分的偏移量,可以更好的查看这些字符

# readelf -x .rodata nix_5744af788e6cbdb29bb41e8b0e5f3cd5 Hex dump of section '.rodata': 0x00002000 03000000 01000200 55736167 653a2073 ........Usage: s 0x00002010 63726970 742e6578 65203c6b 65793e00 cript.exe <key>. 0x00002020 4c656e67 7468206f 66206172 67765b31 Length of argv[1 0x00002030 5d20746f 6f206c6f 6e672e00 5b2b5d20 ] too long..[+] 0x00002040 54686520 666c6167 2069733a 20534159 The flag is: SAY 0x00002050 43555245 7b25737d 205b2b5d 0a000a5b CURE{%s} [+]...[ 0x00002060 2b5d204e 6f20666c 61672066 6f722079 +] No flag for y 0x00002070 6f752e20 5b2b5d00 25632563 25632563 ou. [+].%c%c%c%c 0x00002080 25632563 25632563 25632563 25632563 %c%c%c%c%c%c%c%c 0x00002090 25632563 256300 %c%c%c.

4、检查符号表(Symbols) nm命令查看库文件的符号

# nm -D nix_5744af788e6cbdb29bb41e8b0e5f3cd5 w __cxa_finalize U exit w __gmon_start__ 00002004 R _IO_stdin_used w _ITM_deregisterTMCloneTable w _ITM_registerTMCloneTable U __libc_start_main U printf U puts U sprintf U strlen

说明: -D或–dynamic:显示动态符号。该任选项仅对于动态目标(例如特定类型的共享库)有意义 我们可以发现 printf, puts, sprintf, strlen functions.这些函数未定义。 5、跟踪系统调用(System Calls) 我们可以使用strace之类的工具去跟踪程序的系统调用

# strace ./nix_5744af788e6cbdb29bb41e8b0e5f3cd5 aaaa execve("./nix_5744af788e6cbdb29bb41e8b0e5f3cd5", ["./nix_5744af788e6cbdb29bb41e8b0e"..., "aaaa"], 0x7ffd5ff92d18 /* 46 vars */) = 0 strace: [ Process PID=59965 runs in 32 bit mode. ] brk(NULL) = 0x56f14000 access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory) mmap2(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xf7ef0000 access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory) openat(AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3 fstat64(3, {st_mode=S_IFREG|0644, st_size=220471, ...}) = 0 mmap2(NULL, 220471, PROT_READ, MAP_PRIVATE, 3, 0) = 0xf7eba000 close(3) = 0 access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or directory) openat(AT_FDCWD, "/lib/i386-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3 read(3, "\177ELF\1\1\1\3\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0 \233\1\0004\0\0\0"..., 512) = 512 fstat64(3, {st_mode=S_IFREG|0755, st_size=1930924, ...}) = 0 mmap2(NULL, 1940000, PROT_READ, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0xf7ce0000 mprotect(0xf7cf9000, 1814528, PROT_NONE) = 0 mmap2(0xf7cf9000, 1359872, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x19000) = 0xf7cf9000 mmap2(0xf7e45000, 450560, PROT_READ, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x165000) = 0xf7e45000 mmap2(0xf7eb4000, 12288, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1d3000) = 0xf7eb4000 mmap2(0xf7eb7000, 10784, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0xf7eb7000 close(3) = 0 set_thread_area({entry_number=-1, base_addr=0xf7ef10c0, limit=0x0fffff, seg_32bit=1, contents=0, read_exec_only=0, limit_in_pages=1, seg_not_present=0, useable=1}) = 0 (entry_number=12) mprotect(0xf7eb4000, 8192, PROT_READ) = 0 mprotect(0x5664d000, 4096, PROT_READ) = 0 mprotect(0xf7f1e000, 4096, PROT_READ) = 0 munmap(0xf7eba000, 220471) = 0 fstat64(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(0x88, 0x2), ...}) = 0 brk(NULL) = 0x56f14000 brk(0x56f35000) = 0x56f35000 brk(0x56f36000) = 0x56f36000 write(1, "\n", 1 ) = 1 write(1, "[+] No flag for you. [+]\n", 25[+] No flag for you. [+] ) = 25 exit_group(26) = ? +++ exited with 26 +++

为了更好地理解,我们可以使用ltrace解码C++来跟踪函数名所做的库调用。 我们可以看到正在进行字符串长度检查。

# ltrace -i -C ./nix_5744af788e6cbdb29bb41e8b0e5f3cd5 aaaaaaaa [0x565570e1] __libc_start_main(0x565571e9, 2, 0xffe3a584, 0x56557400 <unfinished ...> [0x56557249] strlen("aaaaaaaa") = 8 [0x565572ca] puts("\n[+] No flag for you. [+]" [+] No flag for you. [+] ) = 26 [0xffffffffffffffff] +++ exited (status 26) +++

6、反编译 ".text"部分 让我们看一下.text部分的反汇编并尝试理解

# objdump -D -M intel -j .text nix_5744af788e6cbdb29bb41e8b0e5f3cd5 nix_5744af788e6cbdb29bb41e8b0e5f3cd5: file format elf32-i386 Disassembly of section .text: 000010b0 <_start>: 10b0: 31 ed xor ebp,ebp 10b2: 5e pop esi 10b3: 89 e1 mov ecx,esp 10b5: 83 e4 f0 and esp,0xfffffff0 10b8: 50 push eax 10b9: 54 push esp 10ba: 52 push edx 10bb: e8 22 00 00 00 call 10e2 <_start+0x32> 10c0: 81 c3 40 2f 00 00 add ebx,0x2f40 10c6: 8d 83 60 d4 ff ff lea eax,[ebx-0x2ba0] 10cc: 50 push eax 10cd: 8d 83 00 d4 ff ff lea eax,[ebx-0x2c00] 10d3: 50 push eax 10d4: 51 push ecx 10d5: 56 push esi 10d6: ff b3 f8 ff ff ff push DWORD PTR [ebx-0x8] 10dc: e8 9f ff ff ff call 1080 <__libc_start_main@plt> 10e1: f4 hlt 10e2: 8b 1c 24 mov ebx,DWORD PTR [esp] 10e5: c3 ret 10e6: 66 90 xchg ax,ax 10e8: 66 90 xchg ax,ax 10ea: 66 90 xchg ax,ax 10ec: 66 90 xchg ax,ax 10ee: 66 90 xchg ax,ax ... Output Omitted ... 000011e9 <main>: 11e9: 8d 4c 24 04 lea ecx,[esp+0x4] 11ed: 83 e4 f0 and esp,0xfffffff0 11f0: ff 71 fc push DWORD PTR [ecx-0x4] 11f3: 55 push ebp 11f4: 89 e5 mov ebp,esp 11f6: 56 push esi 11f7: 53 push ebx 11f8: 51 push ecx 11f9: 83 ec 1c sub esp,0x1c 11fc: e8 ef fe ff ff call 10f0 <__x86.get_pc_thunk.bx> 1201: 81 c3 ff 2d 00 00 add ebx,0x2dff 1207: 89 ce mov esi,ecx 1209: c7 45 e4 00 00 00 00 mov DWORD PTR [ebp-0x1c],0x0 1210: c7 45 dc 07 00 00 00 mov DWORD PTR [ebp-0x24],0x7 1217: 83 3e 02 cmp DWORD PTR [esi],0x2 121a: 74 1c je 1238 <main+0x4f> 121c: 83 ec 0c sub esp,0xc 121f: 8d 83 08 e0 ff ff lea eax,[ebx-0x1ff8] 1225: 50 push eax 1226: e8 15 fe ff ff call 1040 <printf@plt> 122b: 83 c4 10 add esp,0x10 122e: 83 ec 0c sub esp,0xc 1231: 6a 01 push 0x1 1233: e8 28 fe ff ff call 1060 <exit@plt> 1238: 8b 46 04 mov eax,DWORD PTR [esi+0x4] 123b: 83 c0 04 add eax,0x4 123e: 8b 00 mov eax,DWORD PTR [eax] 1240: 83 ec 0c sub esp,0xc 1243: 50 push eax 1244: e8 27 fe ff ff call 1070 <strlen@plt> 1249: 83 c4 10 add esp,0x10 124c: 83 f8 0f cmp eax,0xf 124f: 76 1c jbe 126d <main+0x84> 1251: 83 ec 0c sub esp,0xc 1254: 8d 83 20 e0 ff ff lea eax,[ebx-0x1fe0] 125a: 50 push eax 125b: e8 f0 fd ff ff call 1050 <puts@plt> 1260: 83 c4 10 add esp,0x10 1263: 83 ec 0c sub esp,0xc 1266: 6a 01 push 0x1 1268: e8 f3 fd ff ff call 1060 <exit@plt> 126d: c7 45 e0 00 00 00 00 mov DWORD PTR [ebp-0x20],0x0 1274: eb 1a jmp 1290 <main+0xa7> 1276: 8b 46 04 mov eax,DWORD PTR [esi+0x4] 1279: 83 c0 04 add eax,0x4 127c: 8b 10 mov edx,DWORD PTR [eax] 127e: 8b 45 e0 mov eax,DWORD PTR [ebp-0x20] 1281: 01 d0 add eax,edx 1283: 0f b6 00 movzx eax,BYTE PTR [eax] 1286: 0f be c0 movsx eax,al 1289: 01 45 e4 add DWORD PTR [ebp-0x1c],eax 128c: 83 45 e0 01 add DWORD PTR [ebp-0x20],0x1 1290: 8b 45 e0 mov eax,DWORD PTR [ebp-0x20] 1293: 3b 45 dc cmp eax,DWORD PTR [ebp-0x24] 1296: 7c de jl 1276 <main+0x8d> 1298: 81 7d e4 21 03 00 00 cmp DWORD PTR [ebp-0x1c],0x321 129f: 75 1a jne 12bb <main+0xd2> 12a1: e8 33 00 00 00 call 12d9 <comp_key> 12a6: 83 ec 08 sub esp,0x8 12a9: 50 push eax 12aa: 8d 83 3c e0 ff ff lea eax,[ebx-0x1fc4] 12b0: 50 push eax 12b1: e8 8a fd ff ff call 1040 <printf@plt> 12b6: 83 c4 10 add esp,0x10 12b9: eb 12 jmp 12cd <main+0xe4> 12bb: 83 ec 0c sub esp,0xc 12be: 8d 83 5e e0 ff ff lea eax,[ebx-0x1fa2] 12c4: 50 push eax 12c5: e8 86 fd ff ff call 1050 <puts@plt> 12ca: 83 c4 10 add esp,0x10 12cd: 90 nop 12ce: 8d 65 f4 lea esp,[ebp-0xc] 12d1: 59 pop ecx 12d2: 5b pop ebx 12d3: 5e pop esi 12d4: 5d pop ebp 12d5: 8d 61 fc lea esp,[ecx-0x4] 12d8: c3 ret 000012d9 <comp_key>: 12d9: 55 push ebp 12da: 89 e5 mov ebp,esp 12dc: 57 push edi 12dd: 56 push esi 12de: 53 push ebx 12df: 83 ec 7c sub esp,0x7c 12e2: e8 09 fe ff ff call 10f0 <__x86.get_pc_thunk.bx> 12e7: 81 c3 19 2d 00 00 add ebx,0x2d19 12ed: c7 45 e4 00 00 00 00 mov DWORD PTR [ebp-0x1c],0x0 12f4: c7 45 a8 4c 00 00 00 mov DWORD PTR [ebp-0x58],0x4c 12fb: c7 45 ac 33 00 00 00 mov DWORD PTR [ebp-0x54],0x33 1302: c7 45 b0 74 00 00 00 mov DWORD PTR [ebp-0x50],0x74 1309: c7 45 b4 73 00 00 00 mov DWORD PTR [ebp-0x4c],0x73 1310: c7 45 b8 5f 00 00 00 mov DWORD PTR [ebp-0x48],0x5f 1317: c7 45 bc 67 00 00 00 mov DWORD PTR [ebp-0x44],0x67 131e: c7 45 c0 33 00 00 00 mov DWORD PTR [ebp-0x40],0x33 1325: c7 45 c4 74 00 00 00 mov DWORD PTR [ebp-0x3c],0x74 132c: c7 45 c8 5f 00 00 00 mov DWORD PTR [ebp-0x38],0x5f 1333: c7 45 cc 69 00 00 00 mov DWORD PTR [ebp-0x34],0x69 133a: c7 45 d0 6e 00 00 00 mov DWORD PTR [ebp-0x30],0x6e 1341: c7 45 d4 32 00 00 00 mov DWORD PTR [ebp-0x2c],0x32 1348: c7 45 d8 5f 00 00 00 mov DWORD PTR [ebp-0x28],0x5f 134f: c7 45 dc 52 00 00 00 mov DWORD PTR [ebp-0x24],0x52 1356: c7 45 e0 33 00 00 00 mov DWORD PTR [ebp-0x20],0x33 135d: 8b 55 e0 mov edx,DWORD PTR [ebp-0x20] 1360: 8b 75 dc mov esi,DWORD PTR [ebp-0x24] 1363: 8b 45 d8 mov eax,DWORD PTR [ebp-0x28] 1366: 89 45 a4 mov DWORD PTR [ebp-0x5c],eax 1369: 8b 4d d4 mov ecx,DWORD PTR [ebp-0x2c] 136c: 89 4d a0 mov DWORD PTR [ebp-0x60],ecx 136f: 8b 7d d0 mov edi,DWORD PTR [ebp-0x30] 1372: 89 7d 9c mov DWORD PTR [ebp-0x64],edi 1375: 8b 45 cc mov eax,DWORD PTR [ebp-0x34] 1378: 89 45 98 mov DWORD PTR [ebp-0x68],eax 137b: 8b 4d c8 mov ecx,DWORD PTR [ebp-0x38] 137e: 89 4d 94 mov DWORD PTR [ebp-0x6c],ecx 1381: 8b 7d c4 mov edi,DWORD PTR [ebp-0x3c] 1384: 89 7d 90 mov DWORD PTR [ebp-0x70],edi 1387: 8b 45 c0 mov eax,DWORD PTR [ebp-0x40] 138a: 89 45 8c mov DWORD PTR [ebp-0x74],eax 138d: 8b 4d bc mov ecx,DWORD PTR [ebp-0x44] 1390: 89 4d 88 mov DWORD PTR [ebp-0x78],ecx 1393: 8b 7d b8 mov edi,DWORD PTR [ebp-0x48] 1396: 89 7d 84 mov DWORD PTR [ebp-0x7c],edi 1399: 8b 45 b4 mov eax,DWORD PTR [ebp-0x4c] 139c: 89 45 80 mov DWORD PTR [ebp-0x80],eax 139f: 8b 7d b0 mov edi,DWORD PTR [ebp-0x50] 13a2: 8b 4d ac mov ecx,DWORD PTR [ebp-0x54] 13a5: 8b 45 a8 mov eax,DWORD PTR [ebp-0x58] 13a8: 83 ec 0c sub esp,0xc 13ab: 52 push edx 13ac: 56 push esi 13ad: ff 75 a4 push DWORD PTR [ebp-0x5c] 13b0: ff 75 a0 push DWORD PTR [ebp-0x60] 13b3: ff 75 9c push DWORD PTR [ebp-0x64] 13b6: ff 75 98 push DWORD PTR [ebp-0x68] 13b9: ff 75 94 push DWORD PTR [ebp-0x6c] 13bc: ff 75 90 push DWORD PTR [ebp-0x70] 13bf: ff 75 8c push DWORD PTR [ebp-0x74] 13c2: ff 75 88 push DWORD PTR [ebp-0x78] 13c5: ff 75 84 push DWORD PTR [ebp-0x7c] 13c8: ff 75 80 push DWORD PTR [ebp-0x80] 13cb: 57 push edi 13cc: 51 push ecx 13cd: 50 push eax 13ce: 8d 83 78 e0 ff ff lea eax,[ebx-0x1f88] 13d4: 50 push eax 13d5: 8d 83 30 00 00 00 lea eax,[ebx+0x30] 13db: 50 push eax 13dc: e8 af fc ff ff call 1090 <sprintf@plt> 13e1: 83 c4 50 add esp,0x50 13e4: 8d 83 30 00 00 00 lea eax,[ebx+0x30] 13ea: 8d 65 f4 lea esp,[ebp-0xc] 13ed: 5b pop ebx 13ee: 5e pop esi 13ef: 5f pop edi 13f0: 5d pop ebp 13f1: c3 ret 13f2: 66 90 xchg ax,ax 13f4: 66 90 xchg ax,ax 13f6: 66 90 xchg ax,ax 13f8: 66 90 xchg ax,ax 13fa: 66 90 xchg ax,ax 13fc: 66 90 xchg ax,ax 13fe: 66 90 xchg ax,ax ... Output Omitted ...

在这个二进制文件中,符号没有被剥离,因此我们可以看到函数名称,这使得它更容易理解。 如果你可以阅读汇编代码,你可以很清楚的知道发生了什么。 如果不能阅读汇编代码,让我们做一些实时调试,并尝试更好地理解。 7、实时调试 这里我们使用GDB-Peda进行实时调试 我们首先检查二进制文件中的函数。我们可以看到main,comp_key等函数

gdb-peda$ info functions All defined functions: Non-debugging symbols: 0x00001000 _init 0x00001040 printf@plt 0x00001050 puts@plt 0x00001060 exit@plt 0x00001070 strlen@plt 0x00001080 __libc_start_main@plt 0x00001090 sprintf@plt 0x000010a0 __cxa_finalize@plt 0x000010a8 __gmon_start__@plt 0x000010b0 _start 0x000010f0 __x86.get_pc_thunk.bx 0x00001100 deregister_tm_clones 0x00001140 register_tm_clones 0x00001190 __do_global_dtors_aux 0x000011e0 frame_dummy 0x000011e5 __x86.get_pc_thunk.dx 0x000011e9 main 0x000012d9 comp_key 0x00001400 __libc_csu_init 0x00001460 __libc_csu_fini 0x00001464 _fini

调试方法:首先使用 break main 跳到主函数,使用n来step和ni来执行每条指令

gdb-peda$ break main Breakpoint 1 at 0x11f9 gdb-peda$ run aaaaaaaa Starting program: /mnt/hgfs/shared/Linux RE/nix_5744af788e6cbdb29bb41e8b0e5f3cd5 aaaaaaaa [----------------------------------registers-----------------------------------] EAX: 0xf7f95dd8 --> 0xffffd2f0 --> 0xffffd4d1 ("NVM_DIR=/root/.nvm") EBX: 0x0 ECX: 0xffffd250 --> 0x2 EDX: 0xffffd274 --> 0x0 ESI: 0xf7f94000 --> 0x1d5d8c EDI: 0x0 EBP: 0xffffd238 --> 0x0 ESP: 0xffffd22c --> 0xffffd250 --> 0x2 EIP: 0x565561f9 (<main+16>: sub esp,0x1c) EFLAGS: 0x282 (carry parity adjust zero SIGN trap INTERRUPT direction overflow) [-------------------------------------code-------------------------------------] 0x565561f6 <main+13>: push esi 0x565561f7 <main+14>: push ebx 0x565561f8 <main+15>: push ecx => 0x565561f9 <main+16>: sub esp,0x1c 0x565561fc <main+19>: call 0x565560f0 <__x86.get_pc_thunk.bx> 0x56556201 <main+24>: add ebx,0x2dff 0x56556207 <main+30>: mov esi,ecx 0x56556209 <main+32>: mov DWORD PTR [ebp-0x1c],0x0 [------------------------------------stack-------------------------------------] 0000| 0xffffd22c --> 0xffffd250 --> 0x2 0004| 0xffffd230 --> 0x0 0008| 0xffffd234 --> 0xf7f94000 --> 0x1d5d8c 0012| 0xffffd238 --> 0x0 0016| 0xffffd23c --> 0xf7dd79a1 (<__libc_start_main+241>: add esp,0x10) 0020| 0xffffd240 --> 0xf7f94000 --> 0x1d5d8c 0024| 0xffffd244 --> 0xf7f94000 --> 0x1d5d8c 0028| 0xffffd248 --> 0x0 [------------------------------------------------------------------------------] Legend: code, data, rodata, value Breakpoint 1, 0x565561f9 in main () 1: main = {<text variable, no debug info>} 0x565561e9 <main> 2: puts = {<text variable, no debug info>} 0xf7e25e40 <puts> gdb-peda$

让我们来看看程序的逻辑,程序首先尝试比较参数的数量。它存储在ecx寄存器中并移动到esi,它用于将值与0x2进行比较

0x56556207 <+30>: mov esi,ecx 0x56556209 <+32>: mov DWORD PTR [ebp-0x1c],0x0 0x56556210 <+39>: mov DWORD PTR [ebp-0x24],0x7 0x56556217 <+46>: cmp DWORD PTR [esi],0x2 0x5655621a <+49>: je 0x56556238 <main+79> 0x5655621c <+51>: sub esp,0xc 0x5655621f <+54>: lea eax,[ebx-0x1ff8] 0x56556225 <+60>: push eax 0x56556226 <+61>: call 0x56556040 <printf@plt> 0x5655622b <+66>: add esp,0x10 0x5655622e <+69>: sub esp,0xc 0x56556231 <+72>: push 0x1 0x56556233 <+74>: call 0x56556060 <exit@plt>

其伪代码看起来是这样的:

if(argc != 2) { printf("Usage: script.exe <key>"); exit(1); } 0x56556238 <+79>: mov eax,DWORD PTR [esi+0x4] 0x5655623b <+82>: add eax,0x4 0x5655623e <+85>: mov eax,DWORD PTR [eax] 0x56556240 <+87>: sub esp,0xc 0x56556243 <+90>: push eax 0x56556244 <+91>: call 0x56556070 <strlen@plt> 0x56556249 <+96>: add esp,0x10 0x5655624c <+99>: cmp eax,0xf 0x5655624f <+102>: jbe 0x5655626d <main+132> 0x56556251 <+104>: sub esp,0xc 0x56556254 <+107>: lea eax,[ebx-0x1fe0] 0x5655625a <+113>: push eax 0x5655625b <+114>: call 0x56556050 <puts@plt> 0x56556260 <+119>: add esp,0x10 0x56556263 <+122>: sub esp,0xc 0x56556266 <+125>: push 0x1 0x56556268 <+127>: call 0x56556060 <exit@plt>

其代码是这样的:

if(strlen(argv[1]) > 15) { puts("Length of argv[1] too long."); exit(1); }

如果你检查这个代码,可以看到有一个循环正在迭代我们输入字符串的每个字符。

0x5655626d <+132>: mov DWORD PTR [ebp-0x20],0x0 0x56556274 <+139>: jmp 0x56556290 <main+167> 0x56556276 <+141>: mov eax,DWORD PTR [esi+0x4] 0x56556279 <+144>: add eax,0x4 0x5655627c <+147>: mov edx,DWORD PTR [eax] 0x5655627e <+149>: mov eax,DWORD PTR [ebp-0x20] 0x56556281 <+152>: add eax,edx 0x56556283 <+154>: movzx eax,BYTE PTR [eax] 0x56556286 <+157>: movsx eax,al 0x56556289 <+160>: add DWORD PTR [ebp-0x1c],eax 0x5655628c <+163>: add DWORD PTR [ebp-0x20],0x1 0x56556290 <+167>: mov eax,DWORD PTR [ebp-0x20] 0x56556293 <+170>: cmp eax,DWORD PTR [ebp-0x24] 0x56556296 <+173>: jl 0x56556276 <main+141> 0x56556298 <+175>: cmp DWORD PTR [ebp-0x1c],0x321 0x5655629f <+182>: jne 0x565562bb <main+210> 0x565562a1 <+184>: call 0x565562d9 <comp_key> 0x565562a6 <+189>: sub esp,0x8 0x565562a9 <+192>: push eax 0x565562aa <+193>: lea eax,[ebx-0x1fc4] 0x565562b0 <+199>: push eax 0x565562b1 <+200>: call 0x56556040 <printf@plt> 0x565562b6 <+205>: add esp,0x10 0x565562b9 <+208>: jmp 0x565562cd <main+228> 0x565562bb <+210>: sub esp,0xc 0x565562be <+213>: lea eax,[ebx-0x1fa2] 0x565562c4 <+219>: push eax 0x565562c5 <+220>: call 0x56556050 <puts@plt> 0x565562ca <+225>: add esp,0x10 0x565562cd <+228>: nop 0x565562ce <+229>: lea esp,[ebp-0xc] 0x565562d1 <+232>: pop ecx 0x565562d2 <+233>: pop ebx 0x565562d3 <+234>: pop esi 0x565562d4 <+235>: pop ebp 0x565562d5 <+236>: lea esp,[ecx-0x4] 0x565562d8 <+239>: ret

它到底循环了多少个字符?通常来说,我们的密码长度为7个字符。

[----------------------------------registers-----------------------------------] EAX: 0x6 EBX: 0x56559000 --> 0x3efc ECX: 0x6 EDX: 0xffffd4c6 ("1234567890") ESI: 0xffffd250 --> 0x2 EDI: 0x0 EBP: 0xffffd238 --> 0x0 ESP: 0xffffd210 --> 0xf7f943fc --> 0xf7f95200 --> 0x0 EIP: 0x56556293 (<main+170>: cmp eax,DWORD PTR [ebp-0x24]) EFLAGS: 0x206 (carry PARITY adjust zero sign trap INTERRUPT direction overflow) [-------------------------------------code-------------------------------------] 0x56556289 <main+160>: add DWORD PTR [ebp-0x1c],eax 0x5655628c <main+163>: add DWORD PTR [ebp-0x20],0x1 0x56556290 <main+167>: mov eax,DWORD PTR [ebp-0x20] => 0x56556293 <main+170>: cmp eax,DWORD PTR [ebp-0x24] 0x56556296 <main+173>: jl 0x56556276 <main+141> 0x56556298 <main+175>: cmp DWORD PTR [ebp-0x1c],0x321 0x5655629f <main+182>: jne 0x565562bb <main+210> 0x565562a1 <main+184>: call 0x565562d9 <comp_key> [------------------------------------stack-------------------------------------] 0000| 0xffffd210 --> 0xf7f943fc --> 0xf7f95200 --> 0x0 0004| 0xffffd214 --> 0x7 0008| 0xffffd218 --> 0x6 0012| 0xffffd21c --> 0x135 0016| 0xffffd220 --> 0x2 0020| 0xffffd224 --> 0xffffd2e4 --> 0xffffd487 ("/mnt/hgfs/shared/Linux RE/nix_5744af788e6cbdb29bb41e8b0e5f3cd5") 0024| 0xffffd228 --> 0xffffd2f0 --> 0xffffd4d1 ("NVM_DIR=/root/.nvm") 0028| 0xffffd22c --> 0xffffd250 --> 0x2 [------------------------------------------------------------------------------] Legend: code, data, rodata, value 0x56556293 in main () gdb-peda$ print $ebp-0x24 $24 = (void *) 0xffffd214 gdb-peda$ x/x 0xffffd214 0xffffd214: 0x00000007

代码看起来是这样的:

for (i = 0; i < 7; i++) value += argv[1][i]; if (value != 801) return puts("\n[+] No flag for you. [+]"); return printf("[+] The flag is: SAYCURE{%s} [+]\n", comp_key());

可以看出,如果7个字符总和等于801,即可得到flag。您可以使用任何字符,只要总和是801即可。检查完成后,调用comp_key函数并打印出flag。 比如这样: 114 * 6 + 177 = 801 我们找到数字对应的ASCII字符 114是 ‘r’ 117 是 ‘u’。

Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex 0 00 NUL 16 10 DLE 32 20 48 30 0 64 40 @ 80 50 P 96 60 ` 112 70 p 1 01 SOH 17 11 DC1 33 21 ! 49 31 1 65 41 A 81 51 Q 97 61 a 113 71 q 2 02 STX 18 12 DC2 34 22 " 50 32 2 66 42 B 82 52 R 98 62 b 114 72 r 3 03 ETX 19 13 DC3 35 23 # 51 33 3 67 43 C 83 53 S 99 63 c 115 73 s 4 04 EOT 20 14 DC4 36 24 $ 52 34 4 68 44 D 84 54 T 100 64 d 116 74 t 5 05 ENQ 21 15 NAK 37 25 % 53 35 5 69 45 E 85 55 U 101 65 e 117 75 u 6 06 ACK 22 16 SYN 38 26 & 54 36 6 70 46 F 86 56 V 102 66 f 118 76 v 7 07 BEL 23 17 ETB 39 27 ' 55 37 7 71 47 G 87 57 W 103 67 g 119 77 w 8 08 BS 24 18 CAN 40 28 ( 56 38 8 72 48 H 88 58 X 104 68 h 120 78 x 9 09 HT 25 19 EM 41 29 ) 57 39 9 73 49 I 89 59 Y 105 69 i 121 79 y 10 0A LF 26 1A SUB 42 2A * 58 3A : 74 4A J 90 5A Z 106 6A j 122 7A z 11 0B VT 27 1B ESC 43 2B + 59 3B ; 75 4B K 91 5B [ 107 6B k 123 7B { 12 0C FF 28 1C FS 44 2C , 60 3C < 76 4C L 92 5C \ 108 6C l 124 7C | 13 0D CR 29 1D GS 45 2D - 61 3D = 77 4D M 93 5D ] 109 6D m 125 7D } 14 0E SO 30 1E RS 46 2E . 62 3E > 78 4E N 94 5E ^ 110 6E n 126 7E ~ 15 0F SI 31 1F US 47 2F / 63 3F ? 79 4F O 95 5F _ 111 6F o 127 7F DEL

然后我们将字符作为输入,执行程序即可得到FLAG

# ./nix_5744af788e6cbdb29bb41e8b0e5f3cd5 rrrrrru [+] The flag is: SAYCURE{L3ts_g3t_in2_R3} [+]

# 7、说明

本文由笔者在原文基础上编译,转载请注明来源 原文:

Linux Reverse Engineering CTFs for Beginners | Blog of Osanda osandamalith.com/2019/0

END